COHOMOLOGY OF SCHUBERT SUBVARIETIES OF GL_n/P

E. AKYILDIZ, A. LASCOUX & P. PRAGACZ

Dedicated to Professor I. M. Gelfand on his seventy-fifth birthday

Abstract

Let GL_n be the group of $n \times n$ invertible complex matrices, and P a parabolic subgroup of GL_n . In this paper we give a geometric description of the cohomology ring of a Schubert subvariety Y of GL_n/P . Our main result (Theorem 3.1) states that the coordinate ring $A(Y \cap Z)$ of the scheme-theoretic intersection of Y and the zero scheme Z of the vector field V associated to a principal regular nilpotent element n of gl, is isomorphic to the cohomology algebra $H^*(Y; \mathbb{C})$ of Y. This theorem was conjectured for any reductive algebraic group G in [4], and it was proved for the Grassmannian manifolds in [2]. We were recently informed that Professor D. H. Peterson has just proved that GL, is exactly the algebraic group G where the cohomology ring of any Schubert subvariety Y of the space G/B is isomorphic to $A(Y \cap Z)$. Here B stands for a Borel subgroup of G. It is also interesting to note that the cohomology ring of the union of two Schubert subvarieties in GL_n/P may not admit such a description. This result is due to Professor J. B. Carrell.

0. Introduction

Let X be a nonlinear complex projective variety having the following properties:

- (A) there exists an algebraic vector field V with exactly one zero x_0 , and
 - (B) there exists an algebraic C^* -action on X

$$\lambda \colon \mathbf{C}^* \times X \to X \qquad ((t, x) \to \lambda(t) \cdot x),$$

such that $d\lambda(t) \cdot V = t^p V$ for some p > 0 and for all t in \mathbb{C}^* , where $d\lambda(t)$ is the associated tangent action of $\lambda(t)$ on vector fields.

Let Z be the zero scheme of the vector field V, and let Y be any V- and \mathbb{C}^* -invariant subvariety of X. It follows from property (B) that Z is a \mathbb{C}^* -invariant subscheme of X. Thus, the coordinate ring A(Z)

Received July 12, 1989. The first author was partially supported by King Fahd University Petroleum and Minerals (KFUPM) Project MS/Action 2/100.

(respectively $A(Y\cap Z)$) of Z (respectively $Y\cap Z$) has a natural graded algebra structure induced from the C^* -action λ . Here, $Y\cap Z$ stands for the scheme-theoretic intersection of Y and Z. Throughout the rest of the paper the rings A(Z) and $A(Y\cap Z)$ will be regarded as graded algebras with the gradation above, and $H^*(W; C)$ will denote the cohomology ring of the variety W with coefficients in the field of complex numbers C. The following theorem is proved in [4], [5].

Theorem. There exists a graded algebra isomorphism

$$\psi: A(Z) \to H^*(X; \mathbb{C})$$

which induces a graded algebra homomorphism

$$\overline{\psi} : A(Y \cap Z) \to H^*(Y; \mathbb{C})$$

commuting with the natural maps

$$A(Z) \to A(Y \cap Z)$$
 and $H^*(X; \mathbb{C}) \to H^*(Y; \mathbb{C})$.

For any parabolic subgroup P of a complex reductive algebraic group G, the space G/P has the properties (A) and (B). Moreover any Schubert subvariety $Y = \overline{B\sigma P}$ of G/P is V- and C^* -invariant. Thus, by the Theorem we have a surjective graded algebra homomorphism

$$\overline{\psi}: A(Y \cap Z) \to H^*(Y; \mathbb{C}).$$

Definition. The cohomology ring of the Schubert variety Y is said to have a nilpotent description if $\overline{\psi}$ is an isomorphism. It is known that the cohomology ring of any Schubert subvariety Y of the Grassmann manifold $G_{k,n}$ has a nilpotent description [2]. In this paper, we generalize this result to any Schubert subvariety of the partial flag manifold GL_n/P . The paper is organized as follows. In §1, we begin with the preliminaries. In §2, we investigate a certain ideal in the cohomology ring of GL_n/B associated with a Schubert subvariety $Y = \overline{B\sigma B}$ of GL_n/B . This is done by finding a relation between the functions P_{σ} constructed by Bernstein, Gelfand, and Gelfand in [6] (independently by Demazure in [7]), and the Plücker coordinates. In §3, we first prove that if the cohomology ring of any Schubert subvariety of the space G/B has a nilpotent description, then so does the cohomology ring of any Schubert subvariety of G/P. Here P is a parabolic subgroup of a complex reductive linear algebraic group G which contains the Borel subgroup B of G. Then we finally

prove that the cohomology rings of the Schubert subvarieties of GL_n/P have nilpotent descriptions.

1. Preliminaries

Let GL_n be the group of $n\times n$ invertible complex matrices, B the group of upper triangular matrices in GL_n , W the symmetric group in $1,2,\cdots,n$, and $l(\tau)$ the length of $\tau\in W$. Let $R=\operatorname{C}[x_1,\cdots,x_n]$ be the polynomial algebra with the usual grading, and IR the ideal of R generated by the elementary symmetric polynomials in x_1,\cdots,x_n . W acts on R by permuting the variables. We denote this action by $\sigma\cdot f(x_1,\cdots,x_n)=f(x_{\sigma_1},\cdots,x_{\sigma_n})$, $\sigma=(\sigma_1,\cdots,\sigma_n)\in W$. Let (i,j) denote the transposition of W obtained by changing i with j. We recall the following facts from [6], [7] (see also [10] for a more combinatorial approach). For any $1\leq i< j\leq n$, the polynomial $f-(i,j)\cdot f$ is divisible by x_i-x_j . Thus, the operator

$$\partial_{(i,j)} \colon R \to R, \qquad \partial_{(i,j)}(f) = \frac{f - (i,j) \cdot f}{x_i - x_j},$$

is well defined.

Let i_1, \dots, i_r be integers in $\{1, \dots, n\}$, and let $\omega = (i_1, i_1 + 1) \dots (i_r, i_r + 1)$ be any element of W. Then the following hold:

(a) If $l(\omega) \neq r$, then $\partial_{(i_r, i_r+1)} \cdots \partial_{(i_r, i_r+1)} = 0$.

(b) If $l(\omega) = r$, then the operator $\partial_{(i_1, i_1+1)} \cdots \partial_{(i_r, i_r+1)}$ depends only on ω and not on the representation in the form $\omega = (i_1, i_1+1) \cdots (i_r, i_r+1)$.

In case (b) we put $\partial_{\omega}=\partial_{(i_1,i_1+1)}\cdots\partial_{(i_r,i_r+1)}$. We note that the operator $\partial_{\omega}\colon R\to R$ preserves the ideal IR, and thus it induces an operator $\overline{\partial}_{\omega}\colon R/IR\to R/IR$ of homogeneous degree $-l(\omega)$. Let ω_0 be the permutation $(n,n-1,\cdots,1)$ in W, and let $P_{\omega_0}=(\prod_{1\leq i< j\leq n}(x_i-x_j))/n!$ mod (IR). For each ω in W, let $P_{\omega}=\overline{\partial}_{\omega\omega_0}(P_{\omega_0})$, and let $[X_{\tau}]$ denote the cycle class of the Schubert variety $X_{\tau}=\overline{B\tau B}$ in $H_{\star}(\mathrm{GL}_n/B\,;\,\mathbf{C})$. The following theorem is proved in [6], [7].

Theorem 1.1. There exists a graded algebra isomorphism $\beta: R/IR \to H^*(\mathrm{GL}_n/B; \mathbf{C})$ such that $\beta(P_\omega) = \mathcal{P}([X_{\omega_0\omega}])$ for any ω in W, where \mathcal{P} stands for the Poincaré duality map

$$\mathscr{P}: H_*(\mathrm{GL}_n/B; \mathbb{C}) \to H^*(\mathrm{GL}_n/B; \mathbb{C}).$$

We shall now discuss the nilpotent case A(Z) for the space GL_n/B . Let U be the group of all lower triangular unipotent matrices in GL_n , and let $z_{i,j}$, $1 \le j < i \le n$, be the coordinate functions $z_{i,j}(x) = x_{i,j}$, $x \in U$. Let n be the regular nilpotent $n \times n$ matrix, which is in the Jordan form, and let V be the vector field on GL_n/B induced from the one-parameter subgroup $\exp(tn)$ of GL_n . V has a unique zero $x_0 = B$, and satisfies property (B) [1]. The coordinate ring A(Z) of the zero scheme Z of V in the affine neighborhood U of x_0 has been computed in [2], and the following description has been obtained. Consider the grading on the polynomial algebra $A(U) = \mathbb{C}[z_{i,j}: 1 \le j < i \le n]$ determined by taking $\deg z_{i,j} = i - j$. Then A(Z) is isomorphic, as a graded algebra, to A(U)/I(Z), where I(Z) is the ideal of A(U) generated by the homogeneous elements

$$z_{i+1,j} - z_{i,j-1} + z_{i,j}(z_{j,j-1} - z_{j+1,j}),$$

where we take $z_{k,r} = 0$ if k > n, or r < 1, or r > k.

Let I_k , $k=1,2,\cdots,n-1$, denote the set of sequences of integers (i_1,\cdots,i_k) such that $1\leq i_1< i_2<\cdots< i_i\leq n$, and let W_k be the set of all permutations (μ_1,\cdots,μ_n) in W such that $(\mu_1,\cdots,\mu_k)\in I_k$ and $(\mu_{k+1},\cdots,\mu_n)\in I_{n-k}$. For any (i_1,\cdots,i_k) in I_k there exists a unique permutation in the form $(i_1,\cdots,i_k,i_{k+1},\cdots,i_n)$ in W_k . We denote this permutation by $\sigma(i_1,\cdots,i_k)$. For (i_1,\cdots,i_k) in I_k , let $[i_1,\cdots,k_k]$ denote the function in A(Z) which is induced from the Plücker coordinate $\det[z_{i_m,j}]$, $1\leq m$, $j\leq k$.

Here and throughout the rest of the paper, we put $z_{k,r} = 0$ if k > n, or r > k, or r < 1. The following theorem is proved in [2].

Theorem 1.2. The homomorphism $\varphi: R \to A(U)$ determined by $\varphi(x_i) = z_{i+1,i} - z_{i,i-1}$, $i = 1, \dots, n$, induces a graded algebra isomorphism $\overline{\varphi}: R/IR \to A(Z)$. Moreover for any (i_1, \dots, i_k) in I_k we have

$$\overline{\varphi}(P_{\sigma(i_1,\cdots,i_k)})=[i_1,\cdots,i_k].$$

2. A certain ideal associated with a Schubert variety in the cohomology of GL_n/B

We keep the notation of §1, and moreover, for a given sequence of distinct integers (j_1, \dots, j_k) , $(j_1, \dots, j_k)^<$ (respectively $(j_1, \dots, j_k)^>$) denotes the sequence $(j_{\tau_1}, \dots, j_{\tau_k})$, where $j_{\tau_1} < \dots < j_{\tau_k}$ (respectively, $j_{\tau_1} > \dots > j_{\tau_k}$) for some permutation $\tau = (\tau_1, \dots, \tau_k)$ of $\{1, 2, \dots, k\}$. We recall the following well-known formula, which is due to Monk [11] (see also [6], [7], and [10]).

Theorem 2.1. Let $\mu = (\mu_1, \dots, \mu_n)$ be a permutation in W, and let $k = 1, 2, \dots, n-1$. Then the identity

$$P_{\mu}x_{k} = \sum \operatorname{sgn}(j-k)P_{\mu(j,k)}$$

holds in R/IR, where the sum is over all $j \neq k$ such that $l(\mu(j, k)) = l(\mu) + 1$.

For $k = 1, 2, \dots, n-1$, let $\mathfrak{p}_k : W \to W_k$ denote the projection map

$$\begin{aligned} \mathbf{p}_{k}(\mu_{1}, \, \cdots, \, \mu_{n}) &= \sigma((\mu_{1}, \, \cdots, \, \mu_{k})^{<}) \\ &= ((\mu_{1}, \, \cdots, \, \mu_{k})^{<}, \, (\mu_{k+1}, \, \cdots, \, \mu_{n})^{<}) \, . \end{aligned}$$

We note that the Bruhat ordering \leq on W ($\tau \leq \mu$ if and only if $B\tau B \subseteq \overline{B\mu B}$ in GL_n/B) induces an ordering on W_k , which we will also denote by \leq . Recall that for $\mu = (\mu_1, \cdots, \mu_n)$ and $\nu = (\nu_1, \cdots, \nu_n)$ in W_k , $\mu \leq \nu$ (in W_k) if and only if $\mu_i \leq \nu_i$ for $i = 1, \cdots, k$.

Lemma 2.1. Let $\mu=(\mu_1,\cdots,\mu_n)$ be a permutation in W which satisfies $\mu_1>\cdots>\mu_k$ and $\mu_{k+1}>\cdots>\mu_n$. Then we have the following equality in R/IR,

$$P_{\mu} = P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1} x_{k+1}^{n-k-1} x_{k+2}^{n-k-2} \cdots x_{n-1} + \sum_{k=1}^{\infty} m_{\tau} P_{\tau},$$

where the sum is over all τ in W such that $\mathfrak{p}_k(\mu) < \mathfrak{p}_k(\tau)$ in W_k .

Proof. By using Monk's formula for the successive multiplications

$$\begin{split} P_{\mathfrak{p}_{k}(\mu)} x_{1} \,,\, & (P_{\mathfrak{p}_{k}(\mu)} x_{1}) x_{1} \,,\, \cdots \,,\, (P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-2}) x_{1} \,,\\ & (P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1}) x_{2} \,,\, \cdots \,,\, (P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2}) \,,\, \cdots \,,\\ & P_{\mathfrak{p}_{k}(\mu)} x_{1}^{k-1} x_{2}^{k-2} \cdots x_{k-1} \,, \end{split}$$

it is not difficult to see that at each stage of the multiplication there appears in the sum only one P_{ζ} with $\mathfrak{p}_k(\zeta) = \mathfrak{p}_k(\mu)$, and all the remaining P_{ν} satisfy $\mathfrak{p}_k(\mu) < \mathfrak{p}_k(\nu)$. (Note that we start with the permutation $\mathfrak{p}_k(\mu)$, where the first k elements appear in ascending order.) Thus we get an expression in the form

$$P_{\mathfrak{p}_{k}(\mu)}x_{1}^{k-1}x_{2}^{k-2}\cdots x_{k-1}=P_{(\mu_{1},\cdots,\mu_{k},\mu_{n},\cdots,\mu_{k+1})}+\sum m_{\xi}P_{\xi},$$

where $m_\xi\in Z$, and the sum is over all ξ in W such that $\mathfrak{p}_k(\mu)<\mathfrak{p}_k(\xi)$. We repeat this process, multiplying $P_{\mathfrak{p}_k(\mu)}x_1^{k-1}x_2^{k-2}\cdots x_{k-1}$ first by x_{k+1} , then by x_{k+1}^2 , \cdots , then by x_{k+1}^{n-k-1} , \cdots , and finally by x_{n-1} . It is clear that by arguing as above we obtain the claim.

Lemma 2.2. For any permutation $\mu = (\mu_1, \dots, \mu_n)$ in W, and $k = 1, 2, \dots, n-1$, the equality

$$P_{\mu} = f P_{\mathfrak{p}_{k}(\mu)} + \sum m_{\tau} P_{\tau}$$

holds in R/IR , where the sum is over all τ in W such that $\mathfrak{p}_k(\mu) < \mathfrak{p}_k(\tau)$ in W_k .

Proof. It follows from Lemma 2.1 that

$$P_{((\mu_1, \cdots, \mu_k)^>, (\mu_{k+1}, \cdots, \mu_n)^>)} = P_{\mathfrak{p}_k(\mu)}g + \sum m_{\xi}P_{\xi},$$

where $g=x_1^{k-1}x_2^{k-2}\cdots x_{k-1}x_{k+1}^{n-k-1}\cdots x_{n-1}$. Since the operator $\partial_{(i,\,i+1)}$ has the property that

$$\partial_{(i,i+1)}(P_{(\xi_1,\dots,\xi_n)}) = \left\{ \begin{array}{ll} P_{(\xi_1,\dots,\xi_{i+1},\xi_i,\dots,\xi_n)} & \text{if } \xi_i > \xi_{i+1}, \\ 0 & \text{otherwise,} \end{array} \right.$$

we can pass from $P_{((\mu_1,\cdots,\mu_k)^>,(\mu_{k+1},\cdots,\mu_n)^>)}$ to P_μ by using the operators $\partial_{(i,\,i+1)}$ in an appropriate way. We note that in doing this we need to use only those $\partial_{(i,\,i+1)}$ where $i\neq k$. On the other hand for $i\neq k$ we have

(a) $\partial_{(i,i+1)}(P_{\mathfrak{p}_k(\mu)}g) = P_{\mathfrak{p}_k(\mu)}\partial_{(i,i+1)}(g)$, because $P_{\mathfrak{p}_k(\mu)}$ is a symmetric polynomial x_1, \dots, x_k , and does not depend on the remaining variables x_{k+1}, \dots, x_n .

(b) $\widetilde{\mathfrak{p}}_k(\partial_{(i,i+1)}(P_{\xi})) = \widetilde{\mathfrak{p}}_k(P_{\xi})$, where $\widetilde{\mathfrak{p}}_k$ stands for the function $\widetilde{\mathfrak{p}}_k(P_{\tau}) = P_{\mathfrak{p}_k(\tau)}$ for $\tau \in W$. Thus the assertion follows. q.e.d.

For a given permutation μ in W, let J_{μ} be the ideal of R/IR generated by P_{σ} , $\sigma \nleq \mu$, and let $\mathscr{G} = \bigcup_{k=1}^{n-1} W_k$ denote the set of the so-called Grassmannian permutations of $\{1, 2, \dots, n\}$.

Theorem 2.2. For any permutation μ in W, J_{μ} is the ideal generated by P_{τ} , where $\tau \nleq \mu$, and τ is in \mathscr{G} .

Proof. The assertion is true for $\mu=\omega_0=(n,n-1,\cdots,1)$. For every permutation $\mu\neq\omega_0$ there exists a permutation ν and $k\in\{1,\cdots,n\}$ such that $\mu=\nu(k,k+1)$ and $l(\nu)=l(\mu)+1$. Thus, it is sufficient to prove the following implication: If the assertion is true for ν , then it is true for μ . Let $\mathcal{J}(\mu)$ be the set of all permutations σ such that $\sigma\not\leq\mu$. It suffices to show that for every $\omega\in\mathcal{J}(\mu)-\mathcal{J}(\nu)$ the polynomial P_ω belongs to the ideal J_μ . This is true for $\omega=\nu$. To end, it is sufficient to prove the following implication: If P_ξ belongs to the ideal J_μ , then for every ω such that $\mathfrak{p}_k(\xi)>\mathfrak{p}_k(\omega)$, the polynomial P_ω belongs to the ideal J_μ . By Lemma 2.2 we get $P_\omega=fP_{\mathfrak{p}_k(\omega)}+\sum m_\xi P_\xi$, where the summation is over ξ such that $\mathfrak{p}_k(\xi)>\mathfrak{p}_k(\omega)$, $m_\xi\in Z$, and $f\in R/IR$. We know that

the terms in the sum on the right-hand side are in J_{μ} . Moreover it is not hard to check that $\omega \in \mathscr{I}(\mu) - \mathscr{I}(\nu)$ if and only if $\mathfrak{p}_k(\omega) \in \mathscr{I}(\mu) - \mathscr{I}(\nu)$. Therefore $fP_{\mathfrak{p}_k(\omega)} \in J_{\mu}$, and the proof is complete.

3. The nilpotent description of the cohomology ring of a Schubert subvariety of GL_n/P

Let G be a complex reductive linear algebraic group, B a Borel subgroup of G, and P a parabolic subgroup of G which contains B. Let $\mathfrak m$ be a regular nilpotent element of the Lie algebra $\mathfrak g$ of G which is taken from the Lie algebra $\mathfrak b$ of B, and let $\widetilde V$ (respectively V) be the vector field induced from the C-action $\exp(t\mathfrak n)$ on G/B (respectively G/P). By the Jacobson-Morosov Lemma (see [8]) $\widetilde V$ (respectively V) satisfies property (B), and in fact the above C^* -action is induced from a one-parameter subgroup of B via the left multiplication. We also note that $\widetilde V$ (respectively V) has only one zero $x_0 = B$ (respectively P). Thus we can talk about the nilpotent description of any B-invariant subvariety of G/B (respectively G/P). In the following proposition we shall use the fact that the fixed point scheme X^C of a holomorphic C-action $\sigma: C \times X \to X$ on a complex manifold X is equal to the zero scheme of the vector field V associated to σ . This result appears to be not commonly known; a proof can be found in [3].

Proposition 3.1. If the cohomology ring of any Schubert subvariety of G/B has a nilpotent description, then the cohomology ring of any Schubert subvariety of G/P has also a nilpotent description.

Proof. Let \widetilde{Z} (respectively Z) denote the zero scheme of \widetilde{V} (respectively V), and let $Y_{\sigma} = \overline{B\sigma P}$ be the Schubert subvariety of G/P. Let $\pi \colon B/G \to B/P$ denote the natural projection map. It is well known that the inverse image scheme $\tau^{-1}(Y_{\sigma})$ of Y_{σ} is a Schubert subvariety $X_{\sigma\tau} = \overline{B\sigma\tau B}$ of G/B, and the restriction map $\rho := \pi|\colon X_{\sigma\tau} \to Y_{\sigma}$ is a P/B fibration (see [9], for example). Thus the fiber product map $(Y_{\sigma} \cap Z) \times_{Y_{\sigma}} X_{\sigma\tau} \to Y_{\sigma} \cap Z$ induced by ρ is also a P/B fibration. This implies that $(Y_{\sigma} \cap Z) \times_{Y_{\sigma}} X_{\sigma\tau}$ is B-equivariantly isomorphic to $(Y_{\sigma} \cap Z) \times P/B$, because $\dim Y_{\sigma} \cap Z = 0$. Since ρ is a surjective B-equivariant map, the fixed point scheme $((Y_{\sigma} \cap Z) \times_{Y_{\sigma}} X_{\sigma\tau})^{\mathbb{C}}$ of the C-action induced by $\exp(t\mathfrak{n})$ on $Y_{\sigma} \cap Z) \times_{Y_{\sigma}} X_{\sigma\tau}$ is isomorphic to $X_{\sigma\tau} \cap \widetilde{Z}$. This gives us $(Y_{\sigma} \cap Z) \times (P/B)^{\mathbb{C}} \cong X_{\sigma\tau} \cap Z$. Let ρ_1 denote the map $X_{\sigma\tau} \cap \widetilde{Z} \to Y_{\sigma} \cap Z$, induced by the projection $\rho \colon X_{\sigma\tau} \to Y_{\sigma}$. It follows

from above that the comorphism $(\rho_1)^*$: $A(Y_{\sigma} \cap Z) \to A(X_{\sigma\tau} \cap \widetilde{Z})$ is an inclusion. On the other hand, we have the following commutative diagram of graded algebra homomorphisms:

$$\begin{array}{cccc} A(X_{\sigma\tau}\cap\widetilde{Z}) & \stackrel{\simeq}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} & H^*(X_{\sigma\tau};{\bf C}) \\ & & & & & & & & & & \\ (\rho_1)^* & & & & & & & & & \\ \overline{\psi}\colon A(Y_{\sigma}\cap Z) & \longrightarrow & H^*(Y_{\sigma};{\bf C}) & & & & & \end{array}$$

(see [1], for example). It follows from the diagram that $\overline{\psi}$ is injective, and therefore it is an isomorphism.

Theorem 3.1. The cohomology ring of any Schubert subvariety of GL_n/B has a nilpotent description.

Proof. Let $X_{\omega} = \overline{B\omega B}$ be the Schubert subvariety of GL_n/B associated to ω in W, and let J_{ω} be the ideal of $A(U) = \operatorname{C}[z_{i,j} \colon 1 \leq j < i \leq n]$ generated by those Plücker coordinates $\det[z_{i_m,j}]$, $1 \leq m$, $j \leq k$, where $(i_1, \cdots, i_k) \in I_k$ and $\sigma(i_1, \cdots, i_k) \nleq \omega$ in W. It is well known that J_{ω} is the ideal of the Schubert variety X_{ω} in the affine neighborhood U of $X_0 = B$ (see [9, Theorem 9.1], for example). This implies that if f is in \overline{J}_{ω} , then f = 0 in $A(X_{\omega} \cap Z)$, where \overline{J}_{ω} is the ideal of A(Z) generated by $[i_1, \cdots, i_k]$ such that $\sigma(i_1, \cdots, i_k) \nleq \omega$ in W. By using Theorems 1.2 and 2.2, we obtain $j^*(\overline{\varphi}(P_{\tau})) = 0$ whenever $\tau \nleq \omega$ in W. Here j stands for the natural inclusion $X_{\omega} \cap Z \to Z$, and $\overline{\varphi}$ is the isomorphism $R/IR \cong A(Z)$ given in Theorem 1.2. It follows from this fact that C-vector space $A(X_{\omega} \cap Z)$ is spanned by the set $\{j^*(\overline{\varphi}(P_{\xi})) \colon \xi \leq \omega\}$. Since $\{P_{\sigma} \colon \sigma \in W\}$ is a basis of R/IR, we get $\dim_{\mathbb{C}} A(X_{\omega} \cap Z) \leq \operatorname{cardinality}\{\xi \in W \colon \xi \leq \omega\} = \dim_{\mathbb{C}} H^*(X_{\omega}; \mathbb{C})$. Thus the surjective map $\overline{\psi} \colon A(X_{\omega} \cap Z) \to H^*(X_{\omega}; \mathbb{C})$ is an isomorphism.

Corollary. The cohomology ring of any Schubert subvariety of the partial flag manifold GL_n/P has a nilpotent description.

Proof. The corollary follows from Proposition 3.1 and Theorem 3.1.

References

- E. Akyildiz, SL₂ actions and cohomology of Schubert varieties, Topics in Algebra, Banach Center Publications, Vol. 26, Part 2, Warsaw, 1990, 13-26.
- [2] E. Akyildiz & Y. Akyildiz, The relations of Plücker coordinates to Schubert calculus, J. Differential Geometry 29 (1989) 135-142.
- [3] E. Akyildiz & B. Aubertin, Zero scheme of a vector field is equal to fixed point scheme, IV. Ulusal Matematik Sempozyumu Antakya (1991), to appear.
- [4] E. Akyildiz, J. B. Carrell & D. I. Lieberman, Zeros of holomorphic vector fields on singular spaces and intersection rings of Schubert varieties, Compositio Math. 57 (1986) 237– 248.

- [5] E. Akyildiz & J. B. Carrell, Cohomology of projective varieties with regular SL, actions, Manuscripta Math. 58 (1987) 473-486.
- [6] I. N. Bernstein, I. M. Gelfand & S. I. Gelfand, Schubert cells and cohomology of the space G/P, Russian Math. Surveys 28 (1973) 1-26.
- [7] M. Demazure, Desingularisation des varietes de Schubert generalisees, Ann. Sci. École Norm. Sup (4) 7 (1974) 53-88.
- [8] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of complex semisimple Lie group, Amer. J. Math. 81 (1959) 973-1032.
- [9] V. Lakshmibai & C. S. Seshadri, Geometry of G/P-V, J. Algebra 100 (1986) 462-557. [10] A. Lascoux & M. P. Schützenberger, Symmetry and flag manifolds, Lecture Notes in Math., Vol. 996, Springer, 1983, 118-144.
- [11] D. Monk, The geometry of flag manifolds, Proc. London Math. Soc. 9 (1959) 253-286.

MIDDLE EAST TECHNICAL UNIVERSITY, TURKEY Universite Paris-VII POLISH ACADEMY OF SCIENCES