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Abstract

Let GL, be the group of n x n invertible complex matrices, and P a
parabolic subgroup of GL, . In this paper we give a geometric descrip-
tion of the cohomology ring of a Schubert subvariety Y of GL, /P.
Our main result (Theorem 3.1) states that the coordinate ring 4(Y N Z)
of the scheme-theoretic intersection of Y and the zero scheme Z of
the vector field V' associated to a principal regular nilpotent element n
of gl, is isomorphic to the cohomology algebra H *(Y;C) of Y. This
theorem was conjectured for any reductive algebraic group G in [4], and
it was proved for the Grassmannian manifolds in [2]. We were recently
informed that Professor D. H. Peterson has just proved that GL,, is ex-
actly the algebraic group G where the cohomology ring of any Schubert
subvariety Y of the space G/B is isomorphic to A(Y N Z). Here B
stands for a Borel subgroup of G . It is also interesting to note that the
cohomology ring of the union of two Schubert subvarieties in GL, /P
may not admit such a description. This result is due to Professor J. B.
Carrell.

0. Introduction

Let X be a nonlinear complex projective variety having the following
properties:

(A) there exists an algebraic vector field ¥ with exactly one zero X,
and

(B) there exists an algebraic C*-action on X

ACxX =X ((t,x)=Al) -X),

such that dA(t) -V = ¥ for some p > 0 and for all ¢ in C*, where
dA(t) is the associated tangent action of A(#) on vector fields.

Let Z be the zero scheme of the vector field V', and let Y be any
V- and C*-invariant subvariety of X . It follows from property (B) that
Z is a C*-invariant subscheme of X. Thus, the coordinate ring A(Z)
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(respectively A(Y N Z)) of Z (respectively Y N Z) has a natural graded
algebra structure induced from the C*-action A. Here, Y N Z stands for
the scheme-theoretic intersection of ¥ and Z . Throughout the rest of the
paper the rings A(Z) and A(Y N Z) will be regarded as graded algebras
with the gradation above, and H"(W ; C) will denote the cohomology ring
of the variety W with coefficients in the field of complex numbers C . The
following theorem is proved in [4], [5].
Theorem. There exists a graded algebra isomorphism

v A(Z)— H'(X;C)
which induces a graded algebra homomorphism
Y:AYNZ)—- H (Y;C)
commuting with the natural maps
A(Z) —-A(YNZ) and H'(X;C)— H (Y;C).

For any parabolic subgroup P of a complex reductive algebraic group
G, the space G/P has the properties (A) and (B). Moreover any Schubert
subvariety Y = BoP of G/P is V- and C'-invariant. Thus, by the
Theorem we have a surjective graded algebra homomorphism

V:AYNZ)— H(Y;C).

Definition. The cohomology ring of the Schubert variety Y is said to
have a nilpotent description if ¥ .is an isomorphism. It is known that the
cohomology ring of any Schubert subvariety Y of the Grassmann man-
ifold G, , hasa nilpotent description [2]. In this paper, we generalize
this result to any Schubert subvariety of the partial flag manifold GL,, /P .
The paper is organized as follows. In §1, we begin with the preliminaries.
In §2, we investigate a certain ideal in the cohomology ring of GL, /B
associated with a Schubert subvariety ¥ = BoB of GL, /B. This is done
by finding a relation between the functions P constructed by Bernstein,
Gelfand, and Gelfand in [6] (independently by Demazure in [7]), and the
Pliicker coordinates. In §3, we first prove that if the cohomology ring of
any Schubert subvariety of the space G/B has a nilpotent description,
then so does the cohomology ring of any Schubert subvariety of G/P.
Here P is a parabolic subgroup of a complex reductive linear algebraic
group G which contains the Borel subgroup B of G. Then we finally
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prove that the cohomology rings of the Schubert subvarieties of GL,/P
have nilpotent descriptions.

1. Preliminaries

Let GL, be the group of n x n invertible complex matrices, B the
group of upper triangular matrices in GL,, W the symmetric group in
1,2,---,n,and [(7) the length of 7 € W. Let R = C[x,,---, x,]
be.the polynomial algebra with the usual grading, and IR the ideal of
R generated by the elementary symmetric polynomials in x,---, X, .
W acts on R by permuting the variables. We denote thls actlon by
- flx,, - ,xn)=f(xal,~~ ,xa), 6=(0,, - ,0,)€W. Let (i, )
denote the transposition of W obtained by changing i with j. We recall
the following facts from [6], [7] (see also [10] for a more combinatorial
approach). Forany 1 <i < j < n, the polynomial f—(i, j)-f isdivisible
by x;,—x T Thus, the operator :

:R—R, a(i,j,(ﬂ=—f_(i’j)'f

xi—xj

b

is well defined.

Let i, ,---, i, beintegersin {l,--- ,n},and let w = (i}, +1)---
(i,,i,+1) be any element of W . Then the following hold: '

(a) If /(w) #r, then 8, Jiy+1) ~8(, z+l)=0' :

(b) If /(w) =r, then the operator &, Gy i) a(,.”i, +1y depends only on
w and not on the representation in the form =i, +1)---(i, i +1).

In case (b) we put 9, = (9(1.l iy 1) --~6(l.,, P41) We note that the opera-
tor d,: R — R preserves the ideal /R, and thus it induces an operator
d,: R/IIR - R/IR of homogeneous degree —/(w). Let w, be the per-
mutation (n,n—1,---,1) in W,andlet P, (H1<1<J<n( ))/n'
mod (IR). For each w in W,let P, =0, ( ) and let [X ] denote

the cycle class of the Schubert variety X, = B‘L’B 1n H, (GL,/B;C). The
following theorem is proved in [6], [7].

Theorem 1.1. There exists a graded algebra isomorphism f: R/IR —
H'(GL, /B; C) such that B(P,) = P(X, ) for any o in W, where
P stands for the Poincaré duality map

#:H,GL,/B;C)— H"(GL,/B;C).

We shall now discuss the nilpotent case 4(Z) for the space GL, /B.
Let U be the group of all lower triangular unipotent matrices in GL,,
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and let z; o 1<j<i<n,bethe coordmate functions z; J(x) Xiijo
x € U. Let n be the regular mlpotent nxn matrix, which is in the Jordan
form, and let ¥ be the vector field on GL, /B induced from the one-
parameter subgroup exp(tn) of GL, . V has a unique zero x, = B, and
satisfies property (B) [1]. Thé coordinate ring A(Z) of the zero scheme
Z of V in the affine neighborhood U of x, has been computed in [2],
and the following description has been obtained. Consider the grading
on the polynomial algebra A(U) = C[z 11 £ j < i < n] determined
by taking degz =i—j. Then A(Z) 1s 1somorphlc as a-graded alge-
bra, to A(U)/I ( ) where I(Z) is the ideal of A(U) generated by the
homogeneous elements : :

, CZiv, T E gt E j(ij 1 Zj+1,j)’
where we take zk’r:041f k>n,orr<l,orr>=k.

Let I, , k=1,2,---,n—1, denote the set of sequences of integers
(iy,--- » @) such that 1 < i, <i, <. < i <n,andlet W, be the
set of all permutations (u,, --- , u,) in W such that (u,, -, p,) €I,
and (up.,, - ,u,) €I, _,. Forany (i,--+,[,) in I, there exists a
unique permutation in the form (i, -+, i, iy, ,%,) In W,. We
denote this permutation by o(i,,---, i,). For (i;,---, i) in I, let
[i;, - -, k] denote the function in A(Z) Wthh is induced from the
Plucker coordmate det[z; ,j] 1<m,j<k. : :

Here and throughout the rest of the paper, we put Zy,, = =0 ifk>n,
or r>k,or r<1. The following theorem is proved in [2]

Theorem 1.2.  The homomorphism ¢: R — A(U) determined by ¢(x,)

=Zyy ;= Zpige b =1, ..., n, induces a graded algebra isomorphism
9: R/IR — A(Z). Moreover for any (i, --- ;i) in I, we have
' a(Pa(,‘l e ,‘,"A()k) = [il s ik];

2. A certain ideal assoc}ated with a kSch'ubert va'riety.
in the cohomology of GL, /B '

We keep the notatlon of §1, and moreover, for a given sequence of d1s-

tinct integers (j,, <+, ji), U, or s )" (respectlvely Ups o dil))
denotes the sequence (J Je ot s jT ), where jTl < < jT (respectlvely,
jT > > o ) for some permutatlon T=(t, - , 1) of {1 2, , k}.

We recall the following well-known formula, which is due to Monk [11]
(see also [6], [7],-and [10]). : »
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Theorem 2.1. Let u=(u,, -+, u,) be a permutation in W, and let
k=1,2,--- ,n—1. Then the identity

Px, =) sen(j - k)P,

holds in R/IR, where the sum is over all j # k such that I(u(j, k)) =

I(u)+1.
For k=1,2,---,n—1,let p.: W — W, denote the projection map

pk(.ula ?lun) :6((ﬂ1’ T ﬂk)<)
=((u1’ ’.uk)<: (uk-f-l’ ’lun)<)'

We note that the Bruhat ordering < on W (7t < u if and only if BB C
BuB in GL,/B) induces an ordering on W, , which we will also denote
by <. Recall that for = (g, ---,p,) and v = (v, --- ,v,) in W,
u<v (in W)ifandonlyif u,<v, for i=1,.-- , k.

Lemma 2.1. Let p = (u,,--- , u,) be a permutation in W which
satisfies p, > --- > u, and p ., > --- > u,. Then we have the following
equality in R/IR,

P, = Ppk(y)xf 1x§ 2. 'xk—lxlf—rlk 1xliuzk 2"'xn—l +Zm1Pz ’
where the sum is over all T in W such that p,(n) <p,(z) in W, .
Proof. By using Monk’s formula for the successive multiplications

k-2
By > ByX0 %> (B gy X1 )X
k—1 k—1 k-2
Byt Pas > (B Xt % ).,
P k—1_ k-2
)t X2 Xt

it is not difficult to see that at each stage of the multiplication there appears
in the sum only one P, with p,({) = p, (), and all the remaining P,
satisfy p, (1) < p,(v). (Note that we start with the permutation p,(u),
where the first k elements appear in ascending order.) Thus we get an
expression in the form

k=1 k-2
P X% "'xk—l—P(u,,~~~,uk,u,,,---,yk+,)+Zm¢P¢’

where m; € Z , and the sum is over all £ in W such that pi(u) <p(S).

We repeat this process, multiplying ka( u)xf_lxé‘_z oo X, firstby x, 410

then by x,fﬂ , -+, then by x,:';k_l , -+, and finally by x,_, . Itis clear

that by arguing as above we obtain the claim.
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Lemma 2.2. For any permutation p= (4, -+~ , i,) in W, and k =
1,2,---, n—1, the equality

B, = fF, 2 2m.P,
holds in R/IR, where the sum is over all T in W such that p, (1) < p,(7)

in W,.
Proof. 1t follows from Lemma 2.1 that

P((ul v ) ey > 2 ) = Ppk(#)g + Z méPé >

k-1 k-2 n—k~1 .
where g = x, 'x, "---x,_;X.., X, ;. Since the operator 6(

n i,i+1)
has the property that

3 (P ) = I,(él > ’éi+1 ’éi"" ,é,,) lf éi > éi+1 b4
EHDTEL8T 0 otherwise,

RIS .\ to P by using the operators
X Ay sl) s gy 5 8,)7) . o .
6(1. j+1) 1D an appropriate way. We note that in doing this we need to use
only those §; ;,,, where i# k . On the other hand for i # k we have

(a) 6({,i+1)(Ppk(ﬂ)g) = Ppk(ﬂ)a(i,iﬂ)(g) , because ka(u) 1§ ?1 symn‘letrlc
polynomial x,, ---, x, , and does not depend on the remaining variables
Xyt T Xy _ - ) _

(b) pk(a(l.’m)(Pé)) = p,(P:), where p, stands for the function p,(P,)
= Ppk ¥ for T € W. Thus the assertion follows. g.e.d.

For a given permutation g in W, let J# be the ideal of R/IR gener-

atedby P, o £ pu,andlet & = UZ;; W, denote the set of the so-called
Grassmannian permutations of {1,2,--- , n}.

Theorem 2.2. For any permutation p in W, J, is the ideal generated
by P, where t£pu,and tv isin &.

Proof. The assertion is true for y = w, = (n, n—1,---, 1). Forevery
permutation u # @, there exists a permutation v and k € {1, .-, n}
such that y = v(k,k + 1) and /(v) = I(u) + 1. Thus, it is sufficient to
prove the following implication: If the assertion is true for v, then it is
true for u. Let #(u) be the set of all permutations ¢ such that o £ u.
It suffices to show that for every w € #(u) — #(v) the polynomial P,
belongs to the ideal J# . This is true for «w = v . To end, it is sufficient to
prove the following implication: If Pé belongs to the ideal J# , then for
every @ such that p,(£) > p, (@), the polynomial P, belongs to the ideal
J,- ByLemma 2.2 weget P, = f Ppk(w) +3 m, P, , where the summation is
over & such that p,(¢) > p (@), m: € Z,and f € R/IR. We know that

we can pass from P((
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the terms in the sum on the right-hand side are in J . Moreover it is not
hard to check that @ € .# (u)—# (v) if and only if p, (@) € F(u)—-F(v).
Therefore f Ppk(w) € J# , and the proof is complete.

3. The nilpotent description of the cohomology ring
of a Schubert subvariety of GL, /P

Let G be a complex reductive linear algebraic group, B a Borel sub-
group of G, and P a parabolic subgroup of G which contains B. Let n
be a regular nilpotent element of the Lie algebra g of G which is taken
from the Lie algebra b of B, and let V (respectively V') be the vector
field induced from the C-action exp(tn) on G/B (respectively G/P). B
the Jacobson-Morosov Lemma (see [8]) 174 (respectively V') satisfies prop-
erty (B), and in fact the above C"*-action is induced from a one-parameter
subgroup of B via the left multiplication. We also note that 14 (respec-
tively V') has only one zero x, = B (respectively P). Thus we can talk
about the nilpotent description of any B-invariant subvariety of G/B (re-
spectively G/P). In the following proposition we shall use the fact that
the fixed point scheme X € ofa holomorphic C-action : Cx X — X on
a complex manifold X is equal to the zero scheme of the vector field V
associated to ¢ . This result appears to be not commonly known; a proof
can be found in [3].

Proposition 3.1. If the cohomology ring of any Schubert subvariety of
G/B has a nilpotent description, then the cohomology ring of any Schubert
subvariety of G/P has also a nilpotent description.

Proof. Let Z (respectively Z) denote the zero scheme of v (respec-
tively V), and let Y, = BoP be the Schubert subvariety of G/P. Let
n: B/G — B/P denote the natural projection map. It is well known
that the inverse image scheme r_l(Ya) of Y, is a Schubert subvariety
X, = BotB of G/B, and the restriction map p = 7n[: X, — Y,
is a P/B fibration (see [9], for example). Thus the fiber product map
(Y,nZ) xy, X,, » Y, NZ induced by p is also a P/B fibration.

This 1mp11es that (Y N Z) Xy, X _ is B-equivariantly isomorphic to

aT

(Y,NnZ) x P/B, because dle NZ =0. Since p is a suqectlve B-
equivariant map, the fixed point scheme ((Y,NZ) x, X 1) of the C-

g

action induced by exp(fn) on Y _ NZ) x,, X__ is isomorphic to X, nZ.

o at
This gives us (Y, N Z) x (P/B)C > X,,NZ. Let p, denote the map
X, N Z - Y N Z, induced by the projection p: X . — Y_. It follows
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from above that-the comorphism (pl)*: AY NZ)y— AX, N Z) is an
inclusion. On the other hand, we have the following commutative diagram
of graded algebra homomorphisms:

AX, nZ) —=— H'(X,,;C)

at’

o] i

Y:AY NZ) —— H(Y,;C)

(see [1], for example). It follows from the diagram that ¥ is injective,
and therefore it is an isomorphism. ‘

Theorem 3.1. The cohomology ring of any Schubert subvariety of
GL, /B has a nilpotent description.

Proof Let X, = BwB be the Schubert subvariety of GL, /B associ-
atedto @ in W, andlet J, be theideal of A(U) = C[z;.’j:'l <j<i<n]
generated by those Pliicker coordinates det[zim’ j] , 1 <m, j<k,where

(i, ,0) €l and o(i;, -, i) £ o in W. Itis well known that
J,, is the ideal of the Schubert variety X, in the affine neighborhood U
of x, = B (see [9, Theorem 9.1], for example). This implies that if f
isin J_, then f =0 in A(X, N Z), where J,, is the ideal of A(Z)
generated by [i ,---, i, ] such that o(i;, -, [}) £ w in W. By us-
ing Theorems 1.2 and 2.2, we obtain j*(E(PI)) = 0 whenever 7 £ @
in W. Here j stands for the natural inclusion X, NZ — Z, and @
is the isomorphism R/IR = A(Z) given in Theorem 1.2. It follows
from this fact that C-vector space A(X, N Z) is spanned by the set
{i7(@(P)): & < w}. Since {P,: 6 € W} is a basis of R/IR, we get
dim; A(X, N Z) < cardinality{¢ € W: & < w} = dim.H (X, ; C). Thus
the surjective map ¥: A(X,NZ) — H (X, ; C) is an isomorphism.

Corollary. The cohomology ring of any Schubert subvariety of the par-
tial flag manifold GL, /P has a nilpotent description.

Proof. The corollary follows from Proposition 3.1 and Theorem 3.1.
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